What does it mean to say “the Hotel at Oberlin is solar powered?”

The Hotel at Oberlin, also called the Peter Lewis Gateway Hotel, opened two weeks ago just in time for Oberlin College graduation.  This hotel replaces the Oberlin Inn and has been put forward as the corner stone of what will become a sustainable block of buildings — called the green arts district.  As the budget for this building continues to swell it is unlikely the College will make further headway on the “green arts district” for some time to come.

In multiple venues (Oberlin Alumni Magazine, Cleveland City Club, Cleveland Plain Dealer, etc.) the Special Assistant to the Oberlin College President on Sustainability and the Environment, has described the Hotel at Oberlin as “100% solar powered.”  Here I address the credibility of this claim.  I find the claim to be lacking in substance, yet very costly to the College.

The Hotel at Oberlin will use both electricity and natural gas.  100% of its electricity will be purchased from the local utility, Oberlin Municipal Light & Power Systems (OMLPS), as is the case for nearly all Oberlin College buildings.  In addition, the hotel will use natural gas to produce all of its hot water and, if necessary, for additional winter heating should its ground source heat pumps be unable to meet the demand.  This is a likely situation since the hotel, which is eight times the size of the Lewis Environmental Center, has a ground-well field that is less than four times the size of that building’s well field.  The building includes no on-site renewable power generation, whatsoever.  Based on equipment size the utility estimates a 1,000,000 kWh increase in annual electric use.  That means the new, “energy efficient” hotel will use nearly 2,000,000 kWh of electric energy — more than double that used by the Oberlin Inn it replaces.

What then, could be the basis of the solar power claim?  The President’s Office would have people believe the solar energy for the hotel is coming from the 2.2 MW photovoltaic (PV) array constructed four years ago north of the athletic fields, the so-called OSSO array.  Apparently the College is trying to convince the US Green Building Council (USGBC) that this array provides “on-site renewable energy” to the hotel – worth as many as 8 points towards its coveted LEED certification.

But what is on-site solar electricity?  On-site solar, such as that provided by the two photovoltaic (PV) arrays at the Adam Joseph Lewis Center, furnish electric power directly to a building, avoiding the transmission losses that occur when power passes through multiple high-voltage transformers and transmission lines.  On-site solar generation, added to an existing building,  lowers the building’s fossil energy and carbon footprint.  And, by avoiding transmission losses, the benefits of on-site solar are greater than those achievable through off-site renewable sources.  It should be noted that the converse – adding a building to an existing solar array – increases total greenhouse gas emission!

It is not possible for the OSSO PV array to provide on-site electricity to the Hotel at Oberlin.  First, it is located a mile away from the Hotel — not exactly “on-site.”  Second, the College entered into the OSSO project long before the hotel was conceived. When the OSSO array was constructed in 2012 the College chose to connect it directly to the OMLPS electric grid.  Transmission losses are not avoided.  Third, the City takes all of the array’s electric energy and, in turn, pays the College a premium rate (above the City’s average wholesale generation cost) of $0.085 per kWh.  This arrangement has zero impact on electric sales to College buildings – each building continues to purchase retail electric energy from OMLPS as if the array did not exist.  The City sends the College a monthly check in exchange for this energy which, to date, total more than $800,000.  OMLPS includes the OSSO PV array in its power portfolio.  Once electrons enter the OMLPS grid they go everywhere; they are not “special electrons” that only go to the Hotel or other College buildings.

And finally, even if the College now chose to construct a dedicated, mile-long cable to connect the OSSO array to the Hotel it would be of no use because the College signed a 25-year contract to deliver 100% of the array’s energy to the City in exchange for $85/MWh.  Off-site renewable energy is a good thing, too.  A building can obtain off-site energy by purchasing Renewable Energy Credits or RECs.  The USGBC provides up to 3 points towards LEED certification if a building uses RECs to offset a large fraction of its electric use.  In principle, the RECs produced by the OSSO array make the Hotel at Oberlin eligible for these points.  In fact, OMLPS already holds RECs (mostly wind and hydro) to cover about 85% of its electricity.  That means that any building purchasing energy from the OMLPS grid can claim RECs for 85% of its electric energy.

The College receives all of the RECs associated with OSSO’s energy and does not sell these to the City.  The day OSSO went on-line these RECs made Oberlin College a greener place – and that is a good thing!  The credit is entirely due to the OSSO array.  In principal these RECs may be “assigned” to any College building.  They could, for instance, be assigned to Finney Chapel, built more than 100 years ago.  Does this assignment now make Finney Chapel “100% solar powered?”  Perhaps – but Finney Chapel remains the same energy hog it has always been.  And no one would be fooled by this association into believing that Finney Chapel is now worthy of architectural design awards.  Assigning these RECs to Finney Chapel does not make Oberlin College any greener than it was in 2012 the day the OSSO array began producing its green energy.

And so calling the Gateway Hotel “solar powered” tells us nothing about the hotel or its design; it is nothing more than a cheap marketing trick.

But, as it turns out, it isn’t cheap at all – it is an expensive marketing trick.

The financial model that justified the OSSO array called for the College to sell these solar RECs into Ohio’s REC market and replace them with cheaper wind RECs — adopting a strategy similar to that used by the City of Oberlin to generate its now famous REC revenue.  Put simply, the College would sell its solar RECs into the Ohio REC market at a high price (perhaps $50/MWh) and replace them with cheaper wind RECs (perhaps $5/MWh).  This strategy provided the College with more than $200,000 additional revenue during OSSO’s first two years of operation.

But after the first two years the College stopped selling its solar RECs  – foregoing tens of thousands of dollars in revenue.  During this time Ohio REC prices dropped significantly.  Yet even today solar RECs generated by OSSO have an estimated annual value of $45,000.

Perhaps this lost revenue represents incompetence of the Oberlin College Finance Office.  In addition, this office has remained silent while the City debates whether to return REC revenues to electric customers – of which the College portion would be $200,000 per year!  These are strange financial decisions at a time when the College is desperately seeking to close a huge budget deficit and threatening to downsize its work force.

I believe Oberlin College’s decision not to sell RECs is more calculated.  I believe the decision not to sell OSSO’s solar RECs was made to bolster the narrative that this array provides on-site solar energy to the Hotel at Oberlin.  In 2014 when designers of the Hotel at Oberlin came up with this scheme — it was too late.  The College had already connected the array directly to the City grid, entered a 25-year contract with the City, and it had already sold off two years of its solar RECs.  But why let facts get in the way way?  I believe that the President’s Office decided to stop selling the RECs and pushed the USGBC to accept the idea that the OSSO array provides on-site solar energy to the Hotel at Oberlin — facts be damned!

What is the cost of this decision?  It appears the College failed to honor the third year of its contract to sell solar RECs at $50/MWh.  No doubt the purchasing party in that contract did not object — since the market value for these RECs have fallen to $15/MWh.  The array is expected to produce 3,000 MWh per year.  The lost revenue from REC sales for 2015 is probably $100,000, and at current REC prices, continued failure to sell these RECs represents an additional $30,000 per year in lost net-revenue.  (Note that out-of-state wind RECs purchased to replace solar RECs cost $5/MWh.)

LEED certification is known to add to the cost of design and construction.  But in this case the College is looking to pay an annual fee of $20,000 (in lost REC revenue) to buy 5 LEED points towards its Hotel certification!  (The Hotel’s estimated electric use is 2/3 the amount produced by the OSSO array).  Is LEED certification really worth such an ongoing expense — a kind of franchise fee?

The more disturbing question in all this has to do with the fiscal responsibility of these kinds of decisions.  It is pretty clear that the President of Oberlin College pays more attention to his Special Assistant on Sustainability and the Environment than he does to his own V.P. of Finance.  How long will the Oberlin College Board of Trustees allow this insanity to go on?

San Francisco PUC Building not so green

SFPUC photoThe San Francisco Public Utilities Commission Administration building, constructed in 2012, has been billed as the greenest office building in North America.  Yesterday the San Francisco Examiner published an article which suggests the declaration was a bit premature.   According to its author, Joshua Sabatini, the $202 million dollar, LEED Platinum building has not performed up to expectations.  The building included integrated photovoltaic panels and wind turbines — enough to provide 7% of the building’s energy (not sure if that is total energy or just electric energy).  The energy produced by the wind turbines was never metered and the wind turbines have already been decommissioned; the company that installed them has filed for bankruptcy.  While the PV panels are reported to have satisfactory performance the inverter room was over-heating, requiring the installation of an auxiliary cooling system.  We will have to take the SFPUC’s word for this result as nowhere can I locate specific information about the expected PV electric generation.  It is so much easier to control the story when you don’t share the facts.

But Sabatini’s article does not discuss the energy performance of this building which is also rather disappointing.  According to 2014 energy benchmarking data published by San Francisco for municipal buildings the 277,511 sf SFPUC building had a measured site EUI of 54 kBtu/sf, just 10% lower than the mean for SF office buildings (60 kBtu/sf).  This is hardly the 32% energy savings claimed on the sfwater.org web site.  Moreover, the source EUI for this building is 153 kBtu/sf, which is 10% higher than the mean for the other 38 municipal office buildings whose 2014 energy data were disclosed.  This “greenest office building in North America” uses 10% more primary energy than used for other municipal office buildings — most of them constructed many years ago.

In other words this LEED Platinum building, the greenest office building in North America, uses 10% more primary energy than its counterparts in the San Francisco municipal building stock.  Sounds like a real winner.

Previously in 2009 I found that LEED-certified office buildings demonstrated modest (about 10%) site energy savings but, owing to their greater reliance on electric energy, demonstrated no significant source energy savings.  The result for the SFPUC building is even worse.

Mounting evidence that LEED certified buildings do not save energy

Two recent publications provide corroborating evidence that LEED-certified buildings, on average, do not save primary energy.  One of these looks at energy consumption for 24 academic buildings at a major university.  The other looks at energy consumption by LEED-certified buildings in India.  In both cases there is no evidence that LEED-certification reduced energy consumption.

The study of academic buildings is found in the article entitled “Energy use assessment of educational buildings: toward a campus-wide susainability policy” by Agdas, Srinivasan, Frost, and Masters published in the peer-reviewed journal Sustainable Cities and Societies.  These researchers looked at the 2013 energy consumption of 10 LEED-certified academic buildings and 14 non-certified buildings on the campus of the University of Florida at Gainesville.  They appear to have considered site energy intensity (site EUI) rather than my preferred metric, source energy intensity.  Nevertheless their conclusions are consistent with my own — that LEED certified buildings show no significant energy savings as compared with similar non-certified buildings.  This is also consistent with what has been published now in about 8 peer-reviewed journal articles on this topic.  Only one peer-reviewed article (Newshem et al) reached a different conclusion — and that conclusion was rebutted by my own paper (Scofield).  There are, of course, several reports published by the USGBC and related organizations that draw other conclusions.

The second recent publication comes out of India.  The Indian Green Building Council (IGBC) — India’s equivalent of the USGBC — of its own accord posted energy consumption data for 50 of some 450 LEED certified buildings.  Avikal Somvanshi and his colleagues at the Centre for Science and the Envionment took this opportunity to analyze the energy and water performance of these buildings, finding that the vast majority of these LEED-certified buildings were underperforming expectations.  Moreover, roughly half of the 50 buildings failed even to qualify for the Bureau of Energy Efficiency’s (BEE) Star Rating (India’s equivalent of ENERGY STAR).  The results were so embarrassing that the IGBC removed some of the data from their website and posted a disclaimer discounting the accuracy of the rest.  In the future no doubt the IGBC will follow the practice of the USGBC of denying public access to energy consumption data while releasing selected tidbits for marketing purposes.

How long will the USGBC and its international affiliates be afforded the privilege of making unsupported claims about energy savings while hiding their data?

The Fourth Great American Lie

There is this standing joke about the three great Amercian lies:  1) “the check is in the mail;” 2) “of course I will respect you in the morning;”, and 3) well … let me skip the last one. I think it is time to add a fourth lie to the list — this green project will lower energy use.

In my last post I mentioned that my home town of Oberlin, OH recently purchased new, automatic loader trash/recycling trucks and spent an extra $300,000 so that three of them included fuel-saving, hydraulic-hybrid technology.  Town leaders claimed these trucks would save fuel and reduce carbon emissions.  Simple cost/benefit calculations using their cost and fuel savings figures showed that this was an awful investment that would never pay for itself (in fuel savings) and that the cost per ton of carbon saved was astronomical.

A few weeks ago I requested from the City fuel consumption data for the first six months of operation of the new trucks.  The City Manager and Public Works Director, instead, asked me to wait until after their July 6 report to City Council on the success of the new recycling program.  They both assured me that fuel usage would be covered in this report.  I was promised access to the data following their presentation.

Last Monday, in his presentation to Council, the Public Works Director highlighted data which showed that for the first six months of operation the City recycled 400 tons — as compared with the 337 tons it had recycled in the comparable period prior to acquisition of the new trucks.  This represents a 19% increase in recycling. Unfortunately there was no mention of fuel usage or savings.

Yesterday I obtained fuel consumption data from the Public Works Director for Oberlin’s new garbage/recycing trucks along with comparitive fuel data from previous years using the old trucks. The new trucks are on track to use 2,000 gallons MORE diesel fuel than were used by the old trucks, annually.  That’s right, not less fuel, but MORE fuel.  This is a 19% increase in fuel usage.  Gee what a surprise!

Soon the spin will begin.  City Adminisrators will point out that fuel usage would be even worse were it not for their $300,000 investment in the hybrid technology.  They will point out that the increased fuel usage is due to the new, automatic loading technology included in these trucks (though they failed to mention any expected increased fuel usage when the project was being sold to the public) — which enabled the use of larger recycling containers and the improvement in recycling.  What they will fail to tell us is that they could have achieved the same increase in recycling using the older style truck without automatic loaders.

This is the second recent City project for which the public has been mislead regarding expected enegy savings. The first was the LEED-certified Fire Station renovation.  This green building was supposed to save energy.  It, of course, is bigger and better than the building it replaced — oh yes, and it uses more energy.  But the increase in energy use wasn’t as much as it might have been because it was a green building.  Now we have the same result for the trash and recycle trucks.

Oberlin College is in the process of constructing a new, green hotel — called the “Gateway Project” as it will usher in a new era of green construction.  But people should understand, this new green hotel will use more energy than the old hotel —  it will be bigger and better, and its energy use won’t be as big as it might have been — and this should make us feel good.

And in the next few months Oberlin residents will be asked to approve additional school taxes to construct new, green, energy-efficient public school facilities.  But don’t be surprised when these new facilities actually use more energy than did the old ones.  Don’t get me wrong — they will be more energy efficient than the old facilities, but they will be bigger, and better and — use more energy.

This is the new lie — that our new stuff will use less energy than our old stuff.  But it isn’t true.  Fundamentally we want bigger and better stuff.  People like Donald Trump just build bigger and better stuff and proudly proclaim it.  But isn’t pallitable for most of us — we feel guilty about wanting bigger and better stuff.  So instead we find a way to convince ourseles that our new stuff will be green, it will lower carbon emission, it will make the world a better place — oh, and yes, it will be bigger and better.

We need our lies to make us feel good about doing what we wanted to do all along.  Don’t get me wrong — sometimes the check is in the mail and sometimes the green project does save energy.  But more often than not these lies are offered for temporary expediency,  And, of course, I really will respect you in the morning.

LEED Certification: intent, implementation, and results

Last week I had the opportunity to deliver the keynote address at the annual conference of the Ohio Public Facilities Maintenance Association (OPFMA) held in Columbus, OH.  Here is a link to the slides used for my presentation, LEED Certification: intent, implemenation, and results.

The thrust of my presenation was to discuss what we know about primary energy savings reduction in green house gas emission for LEED-certified buildings.  Despite the fact that there are roughly 11,000 U.S. commercial buildings certified before Jan. 1, 2013 under LEED New Construction (NC), Core and Shell (CS), Existing Buildings (EB:OM), and LEED for Schools — all LEED programs that address whole building energy use — we have published data from just 2% of these buildings.  This paltry amount of data is mostly gathered by voluntary submissions by building owners willing to share their energy data.  You can bet that such data are skewed towards the better performing buildings.

And even so, the data available show that, on average, LEED-certified buildings show no significant source energy savings or reduction in GHG emission relative to comparable, non-LEED buildings.  That was the thrust of my presentation.

Note that promoters of LEED certification continue to claim energy savings — but these claims are based on design projections not actual performance measurements.  For instance, promoters of Ohio’s Green schools claim 33% reduction in energy use.  But there has never been a study of energy used by Ohio’s LEED-certified schools to demonstrate this assumed savings.  Such claims of energy savings are based on “faith” not “fact.”

 

DC Benchmarking data show modest energy savings for LEED buildings

A few months ago Washington DC released its 2012 energy benchmarking data for private commercial buildings 150,000 sf and larger.  Credible energy and water consumption data for some 400 buildings were released, of which 246 were office buildings.  A recent article — stemming from the web site LEED Exposed — has claimed that these data show LEED buildings use more energy than non-LEED buildings.  Specifically it is claimed that LEED buildings have an average weather normalized source EUI of 205 kBtu/sf whereas non-LEED buildings have an average EUI of 199 kBtu/sf.   No details are provided to support this claim.

My students and I have cross-listed the DC benchmarking data with the USGBC LEED Project directory and identified 94 LEED-certified buildings in the 2012 DC benchmarking dataset — all but one being classified as office buildings.  The unweighted mean weather normalized source EUI for these 94 LEED certified buildings is 202 kBtu/sf.   The unweighted mean weather normalized source EUI for remaining 305 buildings is 198 kBtu/sf.  No doubt this is the basis for the claim that LEED buildings use more energy than non-LEED.  However, the difference is not statistically significant.

Moreover, the non-LEED dataset, in addition to 154 office buildings, contains 64 (unrefrigerated) warehouses and 90 multifamily housing buildings — all of which use significantly less energy than do office buildings.  The comparison of these two average EUI is not useful — just a meaningless sound bite.

It should also be noted that the unweighted mean EUI for a collection of buildings is an inappropriate measure of their total energy consumption.  The appropriate measure of energy consumption is their gross energy intensity — their total source energy divided by the total gross square footage.  This issue has been discussed in several papers [2008 IEPEC; 2009 Energy & Buildings].

Note that an apples-to-apples comparison of energy consumed by one set of buildings to that consumed by another requires that the two sets contain the same kinds of buildings in similar proportions.  When possible this is best accomplished by sticking to one specific building type. Since office buildings are far and away the most common in both datasets it makes sense to make an office-to-office comparison — pun intended. 

93 of the LEED-certified buildings are offices.  But many of these buildings were not certified during the period for which data were collected.  Some were certified during 2012 and others were not certified until 2013 or 2014.  Only 46 of the office buildings were certified before Jan. 1, 2012 and are then expected to demonstrate energy and GHG emissions savings for 2012.

The 2012 gross weather-normalized source energy intensity for the 46 LEED certified office buildings is 191 kBtu/sf.  This is 16% lower than the gross weather-normalized source energy intensity for the 154 non-certified office buildings in the dataset, 229 kBtu/sf.  These modest savings are real and statistically significant, though much lower than the 30-40% savings routinely claimed by the USGBC.

Note that similar savings were not found in 2011 or 2012 NYC energy benchmarking data. Analysis of these data showed that LEED-certified office buildings in NYC used the same amount of primary energy and emitted no less green house gases than did other large NYC office buildings.  So the 2012 results from Washington DC are significantly different.  It should be noted that NYC office buildings certified at the gold level were found to exhibit similar modest energy savings.  Perhaps this is a clue as to why Washington DC LEED buildings show energy savings.  More analysis is required.

For the last few years the USGBC has pointed to ENERGY STAR scores for LEED certified buildings as evidence of their energy efficiency.  While ENERGY STAR scores have two important characteristics — they use source rather than site energy and they are based on actual energy measurements — they simply do not have sound scientific basis.  The science has never been vetted, and my own analysis shows these scores are little more than placebos to encourage energy efficiency.  They certainly do not have any quantitative value.

So to summarize, in 2012 LEED offices in Washington used 16% less source energy than  did other office buildings in DC.  What this means and whether such savings justify the added costs of LEED are open questions.

USGBC Continues to “cherry pick” LEED energy data

At the 2007 GreenBuild Conference the USGBC released the results of their first major study of energy consumption by LEED-certified buildings.  Then they presented conclusions from the now infamous study conducted by the New Buildings Institute (paid for by the USGBC and EPA) which, based on data “volunteered by willing building owners” for only 22% of the eligible buildings certified under LEED NC v.2, concluded that LEED certified buildings, on average, were demonstrating the anticipated 25-30% savings in (site) energy.

NBI’s analysis and conclusions were subsequently discredited in the popular media by Henry Gifford and in the peer-reviewed literature by me [see IEPEC 2008 and Energy & Buildings 2009].  NBI’s analytical errors included:

  1. comparing the median of one energy distribution to the mean of another;
  2. comparing energy used by a medium energy subset of LEED buildings with that used by all US commercial buildings (which included types of buildings removed from the LEED set);
  3. improper calculation of the mean (site) energy intensity for LEED buildings and comparing this with the gross mean energy intensity from CBECS;
  4. NBI looked only at building energy used on site (i.e., site EUI) rather than on- and off-site energy use (i.e., source EUI).

To NBI’s credit they made their summary data available to others for independent analysis with no “strings attached.”  In the end even the data gathered by NBI, skewed towards the “better performing” LEED buildings by the method for gathering data, when properly analyzed demonstrated no source energy savings by LEED buildings.  LEED office buildings demonstrated site energy savings of 15-17% — about half that claimed by NBI, the difference being associated with NBI’s improper averaging method.  This site energy savings did not translate into a source energy savings because LEED buildings, on average,  used relatively more electric energy, and the off-site losses associated with this increased electric use wiped out the on-site energy savings.

The lack of representative building energy data was addressed in LEED v.3 (2009) by instituting a requirement that all LEED certified buildings supply the USGBC with annual energy consumption data for five years following certification.  Never again would the USGBC have to publish conclusions based on data volunteered by 1 in 5 buildings.  Expectations were high.

But what has this produced?  The USGBC has learned from their experience with NBI — not to hand over such an important task to an outside organization because you can’t control the outcome.  NBI’s analysis was scientifically flawed — but it was transparent, and such transparency gave critics ammunition to reach different conclusions.  Nowadays the USGBC simply issues carefully packaged sound bites without supplying any details to support their conclusions.  There isn’t even a pretense of conducting scientifically valid analysis.

Consider the most recent claims made by the USGBC at the 2013 Greenbuild conference, summarized by Tristan Roberts in “LEED buildings above average in latest energy data release.”  Roberts asserts the following:

  1. The USGBC has received energy data from 1,861 certified buildings for the 12-mos period July 2012 – June 2013;
  2. About 70% of these were certified through LEED-EBOM (existing buildings);
  3. 450 of these buildings reported their data through the EPA’s Portfolio Manager;
  4. the “building-weighted” (or un-weighted) average source EUI for these 450 buildings is 158 kBtu/sf;
  5. this average is 31% lower than the national median source EUI;
  6. 404 (of the 450) buildings above were eligible for (and received) ENERGY STAR scores;
  7. the average ENERGY STAR score for these 404 buildings was 85.

In addressing the above claims it is hard to know where to begin.  Let’s start with the fact that the USGBC only provides energy information for 450 (or 24%) of the 1,861 buildings for which it has gathered data.  Is this simply due to the fact that it is easier to summarize data gathered by Portfolio Manager than data collected manually?  If so I willingly volunteer my services to go through the data from all 1,861 buildings so that we can get a full picture of LEED building energy performance — not just a snapshot of 24% of the buildings which “self-select themselves” to benchmark through Portfolio Manager.  (The EPA has previously asserted that buildings that benchmark through Portfolio manager tend to be skewed towards “better performing” buildings and are not a random snapshot of commercial buildings.)

Next, consider the “un-weighted” source EUI figure for the 450 buildings.  This is a useless metric.  All EUI reported by CBECS for sets of buildings are “gross energy intensities” equivalent to the gsf-weighted mean EUI (not the un-weighted or building-weighted mean EUI).  This was a major source of error in the 2008 NBI report — leading NBI to incorrectly calculate a 25-30% site energy savings rather than the actual 15-17% site energy savings achieved by that set of LEED buildings.

Consider the assertion that the 158 kBtu/sf source EUI figure is 31% lower than the median source EUI (presumably for all US commercial buildings).  To be correct this would require the median source EUI for all US commercial buildings be 229 kBtu/sf.  This is rubbish.  The best way to obtain such a median EUI figure is from the 2003 CBECS data.  The Energy Information Administration (EIA) does not report source energy figures in any of its CBECS reports.  But the EIA does report site and primary electric energy used by buildings, and these may be combined to calculate source EUI for all 2003 CBECS sampled buildings.  This results in a median source EUI for the estimated 4.9 million commercial buildings to be 118 kBtu/sf.  If you instead restrict this calculation to all buildings with non-zero energy consumption you find these estimated 4.6 million buildings have a median source EUI of 127 kBtu/sf — way below the 229 kBtu/sf figure asserted by the USGBC.  This USGBC claim is patently false.  Of course the USGBC may be referring to the median source EUI of some unspecified subset of U.S. buildings.  By choosing an arbitrary subset you can justify any claim.  And if you don’t specify the subset — well, the claim is nothing more than noise.

What about the average ENERGY STAR score of 85?  Is this impressive?  The answer is no.  Even if you believed that ENERGY STAR scores were, themselves, meaningful, such an average would still mean nothing.  ENERGY STAR scores are supposed to represent percentile rankings in the U.S. building population.  Since there are 4.8 million buildings, by definition we would expect 10% of these (or 480,000) to rank in the top 10% and we would expect another 480,000 of these to rank in the bottom 10%.  That means that if 1,861 buildings are chosen at random from the building population, we expect 10% of these to have ENERGY STAR scores from 91-100.  Similarly, we expect 30% of these (or 558) to have ENERGY STAR scores ranging from 71-100.  Guess what — the average ENERGY STAR scores of these 558 buildings is expected to be 85.  Only those who are mathematically challenged should be impressed that the USGBC has found 404 buildings in its set of 1,861 that have an average ENERGY STAR score of 85.  If you cherry pick your data you can demonstrate any conclusion you like.

And, of course, these 1,861 buildings are not chosen at random — they represent buildings whose owners have a demonstrated interest in energy efficiency apart from LEED.  I would guess that the vast majority of the 404 buildings were certified under the EBOM program and have used Portfolio Manager to benchmark their buildings long before they ever registered for LEED.  LEED certification is just another trophy to be added to their portfolio.  No doubt their ENERGY STAR scores in previous years were much higher than 50 already.  What was the value added by LEED?

I openly offer my services to analyze the USGBC energy data in an unbiased way to accurately asses the collective site and source energy savings by these LEED buildings.  How about it Brendan Owens (VP of technical development for USGBC) — do you have enough confidence in your data to take the challenge?  Which is more important to you, protecting the LEED brand or scientific truth?