Hot air emanating from the Windy City

This week Chicago mayor Rahm Emanuel hosted the North American Climate Summit attended by more than 50 mayors from major cities around the globe.  President Obama joined his old Chicago crony to address the summit.  Mayors joined together to sign the Chicago Climate Charter expressing their collective commitment to lower greenhouse gas emissions.

According to an article in HPAC Magazine Chicago Mayor Rahm Emanuel announced that Chicago had “reduced its carbon emissions by eleven percent from 2005 to 2015, bringing the city to forty percent of the way to meeting its Paris Climate
Agreement goals.”

What bullshit!  The same claim can be made by essentially every city in the United States (some more, some less).  This reduction has nothing to do with any unique accomplishments in Chicago — it is due to the simple fact that GHG emissions for the entire US from 2005 to 2015 went down by 11%.  All boats rise with the tide or, in this case, recede.

The main reason for this national GHG reduction is the fact that over the last decade cheap, fracked natural gas has replaced vast amounts of coal in the electric power sector.  This single change is responsible for the majority of the reduction in US greenhouse gas emission this last decade.  It isn’t energy efficiency, green buildings, renewable energy, or conservation — it is the economic impact of cheap natural gas and the increased cost of coal power due to EPA regulations.

Below is a graph lifted from an EPA report showing total US GHG emissions from 1990 through 2014.  The last bar for 2015 (black) was added by me using data pulled from another article.  The blue bars in this graph shows emissions associated with the electric power sector.

Rahm Emanuel’s claim is true but meaningless — just a lot of hot air emanating from the Windy City.

The Illusions of EUI in Calculating Energy Savings

In the last month I have found the time to begin looking at the 2012 CBECS data released by the EIA last May.

Today I am writing about something I just learned concerning U.S. Worship Facilities.  Here I am looking at the subset of Worship Facilities that meet the criteria stated by the EPA for performing their multivariate regression for the Worship Facility ENERGY STAR model (about 80% of all U.S. Worship Facilities).

In comparing the 2012 and the 2003 CBECS data for Worship Facilities we see there was an estimated 2% increase in the number of these buildings.  As there is an 8-9% uncertainty in the estimated number of these facilities, this increase is  not statistically significant.  The EIA data show that the mean site energy use intensity (EUI) for these facilities actually went down by 15% from 48 to 41 kBtu/sf — and this reduction is statistically significant as it exceeds the 6-8% uncertainty in these figures.  No doubt some government agency will use this reduction to claim success in programs to promote energy efficiency.

But nature is not impressed because total energy used by these buildings actually went up.  The reason — the buildings are, on average, getting bigger!  From 2003 to 2012 the total gross square footage contained in this filtered subset of Worship Facilities increased from 3.2 to 3.8 billion sf, a whopping 23%.  Thus the total site energy used by Worship Facilities grew by 5%.  A similar conclusion can be made for source energy, even with the improved efficiency of the electric power sector over this last decade.

It should be noted that statistics show that the number of Americans who actually go to church declined by about 7% from 2007-2014.  So in a decade when religious worship is decreasing the amount of energy used by Worship Facilities has grown by about 5%.

Bottom line — don’t be fooled by decreases in building EUI.  It is total energy that matters.

Energy harvesting — the siren’s allure

My wife, Deborah Mills-Scofield monitors dozens of media outlets and forwards articles to me that might be of interest.  One recently came my way about an effort in Portland, ME to harvest hydroelectric energy from its water pipes.  A company, LucidEnergy, has developed turbines that can be installed for this purpose.  The basic idea is to capture free energy in municipal water pipes that would otherwise be wasted.

While I applaud such innovation and creativity, I find the effort is misplaced.  I predict these turbines, like solar panels of the 1970’s and green roofs of this last decade — will soon be removed and abandoned.  This kind of energy harvesting is a fool’s errand.

About a decade ago I learned about another energy harvesting project in Israel — to install piezo-electric tranducers in highways to capture energy from passing trucks.  As heavy vehicles passed over these tranducers the truck weight would cause the transducers to compress and produce electricity.  The promoters of this energy argued that normal road compression represented lost energy — their technology would capture energy that would otherwise be lost.  The installed transducers did, in fact, produce electricity.  But I am confident that careful analysis would show that this energy comes from slight increase in fuel consumption of the vehicles that pass over the transducers.  Highway rolling resistance is mostly due to compression of the tires, not the road surface!

I am not aware of any evidence that water passing through municipal pipes arrives at end destinations with excessive kinetic energy.  Therefore any energy harvested along the way is likely to have to be re-injected by pumps.

And the maintenance issues must be significant.  I envision a few years of testing at the end of which it will be concluded that the cost of maintaining these units far exceeds the value of the energy they generate.  And what about the maintenance of pipes which get plugged due to low flow velocity?

Nature has handed us sunlight, wind, and hydo energy.  Harvesting these abundant resources is proving to be a challenge.  Harvesting efforts should focus on these well-understood and low-maintenance options.

Humans clearly waste a terrific amount of energy.  And there are many different ways that this wasted energy might be harvested.  The problem is cost-effectiveness.

 

 

What does it mean to say “the Hotel at Oberlin is solar powered?”

The Hotel at Oberlin, also called the Peter Lewis Gateway Hotel, opened two weeks ago just in time for Oberlin College graduation.  This hotel replaces the Oberlin Inn and has been put forward as the corner stone of what will become a sustainable block of buildings — called the green arts district.  As the budget for this building continues to swell it is unlikely the College will make further headway on the “green arts district” for some time to come.

In multiple venues (Oberlin Alumni Magazine, Cleveland City Club, Cleveland Plain Dealer, etc.) the Special Assistant to the Oberlin College President on Sustainability and the Environment, has described the Hotel at Oberlin as “100% solar powered.”  Here I address the credibility of this claim.  I find the claim to be lacking in substance, yet very costly to the College.

The Hotel at Oberlin will use both electricity and natural gas.  100% of its electricity will be purchased from the local utility, Oberlin Municipal Light & Power Systems (OMLPS), as is the case for nearly all Oberlin College buildings.  In addition, the hotel will use natural gas to produce all of its hot water and, if necessary, for additional winter heating should its ground source heat pumps be unable to meet the demand.  This is a likely situation since the hotel, which is eight times the size of the Lewis Environmental Center, has a ground-well field that is less than four times the size of that building’s well field.  The building includes no on-site renewable power generation, whatsoever.  Based on equipment size the utility estimates a 1,000,000 kWh increase in annual electric use.  That means the new, “energy efficient” hotel will use nearly 2,000,000 kWh of electric energy — more than double that used by the Oberlin Inn it replaces.

What then, could be the basis of the solar power claim?  The President’s Office would have people believe the solar energy for the hotel is coming from the 2.2 MW photovoltaic (PV) array constructed four years ago north of the athletic fields, the so-called OSSO array.  Apparently the College is trying to convince the US Green Building Council (USGBC) that this array provides “on-site renewable energy” to the hotel – worth as many as 8 points towards its coveted LEED certification.

But what is on-site solar electricity?  On-site solar, such as that provided by the two photovoltaic (PV) arrays at the Adam Joseph Lewis Center, furnish electric power directly to a building, avoiding the transmission losses that occur when power passes through multiple high-voltage transformers and transmission lines.  On-site solar generation, added to an existing building,  lowers the building’s fossil energy and carbon footprint.  And, by avoiding transmission losses, the benefits of on-site solar are greater than those achievable through off-site renewable sources.  It should be noted that the converse – adding a building to an existing solar array – increases total greenhouse gas emission!

It is not possible for the OSSO PV array to provide on-site electricity to the Hotel at Oberlin.  First, it is located a mile away from the Hotel — not exactly “on-site.”  Second, the College entered into the OSSO project long before the hotel was conceived. When the OSSO array was constructed in 2012 the College chose to connect it directly to the OMLPS electric grid.  Transmission losses are not avoided.  Third, the City takes all of the array’s electric energy and, in turn, pays the College a premium rate (above the City’s average wholesale generation cost) of $0.085 per kWh.  This arrangement has zero impact on electric sales to College buildings – each building continues to purchase retail electric energy from OMLPS as if the array did not exist.  The City sends the College a monthly check in exchange for this energy which, to date, total more than $800,000.  OMLPS includes the OSSO PV array in its power portfolio.  Once electrons enter the OMLPS grid they go everywhere; they are not “special electrons” that only go to the Hotel or other College buildings.

And finally, even if the College now chose to construct a dedicated, mile-long cable to connect the OSSO array to the Hotel it would be of no use because the College signed a 25-year contract to deliver 100% of the array’s energy to the City in exchange for $85/MWh.  Off-site renewable energy is a good thing, too.  A building can obtain off-site energy by purchasing Renewable Energy Credits or RECs.  The USGBC provides up to 3 points towards LEED certification if a building uses RECs to offset a large fraction of its electric use.  In principle, the RECs produced by the OSSO array make the Hotel at Oberlin eligible for these points.  In fact, OMLPS already holds RECs (mostly wind and hydro) to cover about 85% of its electricity.  That means that any building purchasing energy from the OMLPS grid can claim RECs for 85% of its electric energy.

The College receives all of the RECs associated with OSSO’s energy and does not sell these to the City.  The day OSSO went on-line these RECs made Oberlin College a greener place – and that is a good thing!  The credit is entirely due to the OSSO array.  In principal these RECs may be “assigned” to any College building.  They could, for instance, be assigned to Finney Chapel, built more than 100 years ago.  Does this assignment now make Finney Chapel “100% solar powered?”  Perhaps – but Finney Chapel remains the same energy hog it has always been.  And no one would be fooled by this association into believing that Finney Chapel is now worthy of architectural design awards.  Assigning these RECs to Finney Chapel does not make Oberlin College any greener than it was in 2012 the day the OSSO array began producing its green energy.

And so calling the Gateway Hotel “solar powered” tells us nothing about the hotel or its design; it is nothing more than a cheap marketing trick.

But, as it turns out, it isn’t cheap at all – it is an expensive marketing trick.

The financial model that justified the OSSO array called for the College to sell these solar RECs into Ohio’s REC market and replace them with cheaper wind RECs — adopting a strategy similar to that used by the City of Oberlin to generate its now famous REC revenue.  Put simply, the College would sell its solar RECs into the Ohio REC market at a high price (perhaps $50/MWh) and replace them with cheaper wind RECs (perhaps $5/MWh).  This strategy provided the College with more than $200,000 additional revenue during OSSO’s first two years of operation.

But after the first two years the College stopped selling its solar RECs  – foregoing tens of thousands of dollars in revenue.  During this time Ohio REC prices dropped significantly.  Yet even today solar RECs generated by OSSO have an estimated annual value of $45,000.

Perhaps this lost revenue represents incompetence of the Oberlin College Finance Office.  In addition, this office has remained silent while the City debates whether to return REC revenues to electric customers – of which the College portion would be $200,000 per year!  These are strange financial decisions at a time when the College is desperately seeking to close a huge budget deficit and threatening to downsize its work force.

I believe Oberlin College’s decision not to sell RECs is more calculated.  I believe the decision not to sell OSSO’s solar RECs was made to bolster the narrative that this array provides on-site solar energy to the Hotel at Oberlin.  In 2014 when designers of the Hotel at Oberlin came up with this scheme — it was too late.  The College had already connected the array directly to the City grid, entered a 25-year contract with the City, and it had already sold off two years of its solar RECs.  But why let facts get in the way way?  I believe that the President’s Office decided to stop selling the RECs and pushed the USGBC to accept the idea that the OSSO array provides on-site solar energy to the Hotel at Oberlin — facts be damned!

What is the cost of this decision?  It appears the College failed to honor the third year of its contract to sell solar RECs at $50/MWh.  No doubt the purchasing party in that contract did not object — since the market value for these RECs have fallen to $15/MWh.  The array is expected to produce 3,000 MWh per year.  The lost revenue from REC sales for 2015 is probably $100,000, and at current REC prices, continued failure to sell these RECs represents an additional $30,000 per year in lost net-revenue.  (Note that out-of-state wind RECs purchased to replace solar RECs cost $5/MWh.)

LEED certification is known to add to the cost of design and construction.  But in this case the College is looking to pay an annual fee of $20,000 (in lost REC revenue) to buy 5 LEED points towards its Hotel certification!  (The Hotel’s estimated electric use is 2/3 the amount produced by the OSSO array).  Is LEED certification really worth such an ongoing expense — a kind of franchise fee?

The more disturbing question in all this has to do with the fiscal responsibility of these kinds of decisions.  It is pretty clear that the President of Oberlin College pays more attention to his Special Assistant on Sustainability and the Environment than he does to his own V.P. of Finance.  How long will the Oberlin College Board of Trustees allow this insanity to go on?

Jay Whitacre wins 2015 MIT Prize

Today it was announced that Oberlin College physics alumn (and my former student) Jay Whitacre (OC’94) has been awarded the MIT Prize for his inventive work on batteries.  His company, Aquion Energy, has attracted funds from some pretty important investors.  Not bad for a kid who didn’t take calculus in high school.

Jay-Whitacre-Lemelson-MIT_0

Congrats Jay!

Mounting evidence that LEED certified buildings do not save energy

Two recent publications provide corroborating evidence that LEED-certified buildings, on average, do not save primary energy.  One of these looks at energy consumption for 24 academic buildings at a major university.  The other looks at energy consumption by LEED-certified buildings in India.  In both cases there is no evidence that LEED-certification reduced energy consumption.

The study of academic buildings is found in the article entitled “Energy use assessment of educational buildings: toward a campus-wide susainability policy” by Agdas, Srinivasan, Frost, and Masters published in the peer-reviewed journal Sustainable Cities and Societies.  These researchers looked at the 2013 energy consumption of 10 LEED-certified academic buildings and 14 non-certified buildings on the campus of the University of Florida at Gainesville.  They appear to have considered site energy intensity (site EUI) rather than my preferred metric, source energy intensity.  Nevertheless their conclusions are consistent with my own — that LEED certified buildings show no significant energy savings as compared with similar non-certified buildings.  This is also consistent with what has been published now in about 8 peer-reviewed journal articles on this topic.  Only one peer-reviewed article (Newshem et al) reached a different conclusion — and that conclusion was rebutted by my own paper (Scofield).  There are, of course, several reports published by the USGBC and related organizations that draw other conclusions.

The second recent publication comes out of India.  The Indian Green Building Council (IGBC) — India’s equivalent of the USGBC — of its own accord posted energy consumption data for 50 of some 450 LEED certified buildings.  Avikal Somvanshi and his colleagues at the Centre for Science and the Envionment took this opportunity to analyze the energy and water performance of these buildings, finding that the vast majority of these LEED-certified buildings were underperforming expectations.  Moreover, roughly half of the 50 buildings failed even to qualify for the Bureau of Energy Efficiency’s (BEE) Star Rating (India’s equivalent of ENERGY STAR).  The results were so embarrassing that the IGBC removed some of the data from their website and posted a disclaimer discounting the accuracy of the rest.  In the future no doubt the IGBC will follow the practice of the USGBC of denying public access to energy consumption data while releasing selected tidbits for marketing purposes.

How long will the USGBC and its international affiliates be afforded the privilege of making unsupported claims about energy savings while hiding their data?

The Fourth Great American Lie

There is this standing joke about the three great Amercian lies:  1) “the check is in the mail;” 2) “of course I will respect you in the morning;”, and 3) well … let me skip the last one. I think it is time to add a fourth lie to the list — this green project will lower energy use.

In my last post I mentioned that my home town of Oberlin, OH recently purchased new, automatic loader trash/recycling trucks and spent an extra $300,000 so that three of them included fuel-saving, hydraulic-hybrid technology.  Town leaders claimed these trucks would save fuel and reduce carbon emissions.  Simple cost/benefit calculations using their cost and fuel savings figures showed that this was an awful investment that would never pay for itself (in fuel savings) and that the cost per ton of carbon saved was astronomical.

A few weeks ago I requested from the City fuel consumption data for the first six months of operation of the new trucks.  The City Manager and Public Works Director, instead, asked me to wait until after their July 6 report to City Council on the success of the new recycling program.  They both assured me that fuel usage would be covered in this report.  I was promised access to the data following their presentation.

Last Monday, in his presentation to Council, the Public Works Director highlighted data which showed that for the first six months of operation the City recycled 400 tons — as compared with the 337 tons it had recycled in the comparable period prior to acquisition of the new trucks.  This represents a 19% increase in recycling. Unfortunately there was no mention of fuel usage or savings.

Yesterday I obtained fuel consumption data from the Public Works Director for Oberlin’s new garbage/recycing trucks along with comparitive fuel data from previous years using the old trucks. The new trucks are on track to use 2,000 gallons MORE diesel fuel than were used by the old trucks, annually.  That’s right, not less fuel, but MORE fuel.  This is a 19% increase in fuel usage.  Gee what a surprise!

Soon the spin will begin.  City Adminisrators will point out that fuel usage would be even worse were it not for their $300,000 investment in the hybrid technology.  They will point out that the increased fuel usage is due to the new, automatic loading technology included in these trucks (though they failed to mention any expected increased fuel usage when the project was being sold to the public) — which enabled the use of larger recycling containers and the improvement in recycling.  What they will fail to tell us is that they could have achieved the same increase in recycling using the older style truck without automatic loaders.

This is the second recent City project for which the public has been mislead regarding expected enegy savings. The first was the LEED-certified Fire Station renovation.  This green building was supposed to save energy.  It, of course, is bigger and better than the building it replaced — oh yes, and it uses more energy.  But the increase in energy use wasn’t as much as it might have been because it was a green building.  Now we have the same result for the trash and recycle trucks.

Oberlin College is in the process of constructing a new, green hotel — called the “Gateway Project” as it will usher in a new era of green construction.  But people should understand, this new green hotel will use more energy than the old hotel —  it will be bigger and better, and its energy use won’t be as big as it might have been — and this should make us feel good.

And in the next few months Oberlin residents will be asked to approve additional school taxes to construct new, green, energy-efficient public school facilities.  But don’t be surprised when these new facilities actually use more energy than did the old ones.  Don’t get me wrong — they will be more energy efficient than the old facilities, but they will be bigger, and better and — use more energy.

This is the new lie — that our new stuff will use less energy than our old stuff.  But it isn’t true.  Fundamentally we want bigger and better stuff.  People like Donald Trump just build bigger and better stuff and proudly proclaim it.  But isn’t pallitable for most of us — we feel guilty about wanting bigger and better stuff.  So instead we find a way to convince ourseles that our new stuff will be green, it will lower carbon emission, it will make the world a better place — oh, and yes, it will be bigger and better.

We need our lies to make us feel good about doing what we wanted to do all along.  Don’t get me wrong — sometimes the check is in the mail and sometimes the green project does save energy.  But more often than not these lies are offered for temporary expediency,  And, of course, I really will respect you in the morning.