DC Benchmarking data show modest energy savings for LEED buildings

A few months ago Washington DC released its 2012 energy benchmarking data for private commercial buildings 150,000 sf and larger.  Credible energy and water consumption data for some 400 buildings were released, of which 246 were office buildings.  A recent article — stemming from the web site LEED Exposed — has claimed that these data show LEED buildings use more energy than non-LEED buildings.  Specifically it is claimed that LEED buildings have an average weather normalized source EUI of 205 kBtu/sf whereas non-LEED buildings have an average EUI of 199 kBtu/sf.   No details are provided to support this claim.

My students and I have cross-listed the DC benchmarking data with the USGBC LEED Project directory and identified 94 LEED-certified buildings in the 2012 DC benchmarking dataset — all but one being classified as office buildings.  The unweighted mean weather normalized source EUI for these 94 LEED certified buildings is 202 kBtu/sf.   The unweighted mean weather normalized source EUI for remaining 305 buildings is 198 kBtu/sf.  No doubt this is the basis for the claim that LEED buildings use more energy than non-LEED.  However, the difference is not statistically significant.

Moreover, the non-LEED dataset, in addition to 154 office buildings, contains 64 (unrefrigerated) warehouses and 90 multifamily housing buildings — all of which use significantly less energy than do office buildings.  The comparison of these two average EUI is not useful — just a meaningless sound bite.

It should also be noted that the unweighted mean EUI for a collection of buildings is an inappropriate measure of their total energy consumption.  The appropriate measure of energy consumption is their gross energy intensity — their total source energy divided by the total gross square footage.  This issue has been discussed in several papers [2008 IEPEC; 2009 Energy & Buildings].

Note that an apples-to-apples comparison of energy consumed by one set of buildings to that consumed by another requires that the two sets contain the same kinds of buildings in similar proportions.  When possible this is best accomplished by sticking to one specific building type. Since office buildings are far and away the most common in both datasets it makes sense to make an office-to-office comparison — pun intended. 

93 of the LEED-certified buildings are offices.  But many of these buildings were not certified during the period for which data were collected.  Some were certified during 2012 and others were not certified until 2013 or 2014.  Only 46 of the office buildings were certified before Jan. 1, 2012 and are then expected to demonstrate energy and GHG emissions savings for 2012.

The 2012 gross weather-normalized source energy intensity for the 46 LEED certified office buildings is 191 kBtu/sf.  This is 16% lower than the gross weather-normalized source energy intensity for the 154 non-certified office buildings in the dataset, 229 kBtu/sf.  These modest savings are real and statistically significant, though much lower than the 30-40% savings routinely claimed by the USGBC.

Note that similar savings were not found in 2011 or 2012 NYC energy benchmarking data. Analysis of these data showed that LEED-certified office buildings in NYC used the same amount of primary energy and emitted no less green house gases than did other large NYC office buildings.  So the 2012 results from Washington DC are significantly different.  It should be noted that NYC office buildings certified at the gold level were found to exhibit similar modest energy savings.  Perhaps this is a clue as to why Washington DC LEED buildings show energy savings.  More analysis is required.

For the last few years the USGBC has pointed to ENERGY STAR scores for LEED certified buildings as evidence of their energy efficiency.  While ENERGY STAR scores have two important characteristics — they use source rather than site energy and they are based on actual energy measurements — they simply do not have sound scientific basis.  The science has never been vetted, and my own analysis shows these scores are little more than placebos to encourage energy efficiency.  They certainly do not have any quantitative value.

So to summarize, in 2012 LEED offices in Washington used 16% less source energy than  did other office buildings in DC.  What this means and whether such savings justify the added costs of LEED are open questions.

ENERGY STAR energy benchmarking is not ready for prime time

I recently had occasion to read an old paper by Janda and Brodsky describing the “first class” of ENERGY STAR certified office buildings.  This is one of only a handful of papers in the peer-reviewed literature regarding ENERGY STAR building scores.  Janda and Brodsky describe the brand name ENERGY STAR as

a set of voluntary partnerships between the U.S. government and product manufacturers, local utilities, home builders, retailers, and businesses.  These partnerships are designed to encourage energy efficiency in products, appliances, homes, offices, and other buildings.

This was the basis for the EPA’s building ENERGY STAR scoring system.  It was a “game” that building managers voluntarily agreed to play with rules (methodology for scoring buildings) set by the EPA in consultation with those playing the game.  There was no scientific vetting of the “rules of the game” — nor did there need to be — it was just a game designed to “encourage energy efficiency.”  No one was forced to play the game.  Data submitted to Portfolio Manager (the EPA’s web-based tool for calculating scores) and ENERGY STAR scores issued by the EPA were confidential — unless a building sought and received ENERGY STAR certification.  Participation was entirely voluntary.  Building managers disappointed with their ENERGY STAR scores could just walk away from the game — no harm, no foul.

But this has all changed.  In recent years 1) the EPA has published specific claims regarding energy savings associated with its ENERGY STAR benchmarking program (real savings not just fantasy football), 2) external organizations like the USGBC have adopted the ENERGY STAR score as their metric for energy efficiency in green building certification programs and are using these scores to make energy savings claims of their own, and 3) major U.S. cities have passed laws requiring commercial building owners to use Portfolio Manager to benchmark their buildings and, in many cases, the resulting ENERGY STAR scores are being made public.  With federal, state, and local governments requiring LEED certification for public buildings this is no longer a voluntary game — it is mandatory and real (testable) energy claims are being made based upon ENERGY STAR scores.  Now the science behind such claims actually matters — and this science has never been vetted.

Its kinda like a small, “mom and pop” operation that has been selling chicken soup using “grandma’s recipe” without obtaining proper license or FDA approval.  Now imagine Walmart decides to market and sell the soup — the scrutiny changes.

As a voluntary game with no connection to reality it is OK that the EPA negotiates rules for its ENERGY STAR ratings with different constituents — like allowing Washington DC office buildings to ignore their “first floors” in seeking ENERGY STAR certification.  After all, who am I to interfere in the activities between consenting adults when these activities do not affect me?  But for ENERGY STAR — these days are gone.

In the next year we will learn much about the science that underpins the EPA’s ENERGY STAR benchmarking system — and the results are likely to be very disappointing.  This benchmarking system is not ready for prime time.

NYC Energy Benchmarking raises questions about LEED-certification

With growing concern over global climate change and the US Federal government frozen in political gridlock a number of U.S. cities have decided to unilaterally take action to reduce their own green house gas (GHG) emission.  Any serious effort to reduce GHG emission must involve the implementation of some kind of system to track energy consumption.  To this end these same cities have instituted Energy Benchmarking laws — laws that require building owners to annually submit energy consumption data (by fuel) to a designated agency that collects and processes these data.  The Institute for Market Transformation (IMT) has been instrumental in coordinating this effort.

The requirement is typically phased in over a couple of years — starting with municipal buildings, followed by large commercial buildings, smaller commercial buildings, and finally residential buildings.  New York City, Philadelphia, Washington DC, San Francisco, Austin, and Seattle were the first to pass such ordinances.  Minneapolis, Chicago, and Boston have all taken steps to follow suit.

Public disclosure of energy data is an important component of many (but not all) of these local ordinances.  New York City (NYC) is further along than other cities and last October released 2011 energy benchmarking data for commercial buildings that were 50,000 sf or larger — excluding condominiums.  Public benchmarking data were released for more than 4,000 large commercial buildings in the NYC’s five boroughs.  NYC, like many of the other cities engaged in benchmarking, utilized the EPA’s ENERGY STAR Portfolio Manager for gathering and processing benchmarking data.  Data released included building address, building type, total gsf, site energy intensity, weather-normalized source energy intensity, water usage, and total GHG emission.

The NYC benchmarking data included data for more than 1,000 office buildings.  Some of these buildings are certified green buildings, so would be expected to use less energy and have less GHG emission than other NYC office buildings.  These green buildings are not identified in the NYC Benchmarking data, but many may be identified by searching other data bases – such as the US Green Building Council’s LEED project database or the EPA’s list of ENERGY STAR certified buildings.

A few dozen LEED-certified office buildings have been identified in the 2011 NYC Benchmarking database.  (The full peer-reviewed paper is to be published in Energy and Buildings.)  Of these, 21 were certified before 2011 by new construction (NC), existing buildings operation and maintenance (EB:O&M), or core and shell (CS) LEED programs which address whole building energy use.  These 21 buildings constitute 21.6 million gsf.  Their 2011 source energy consumption and GHG emission has been compared with those for the other NYC office buildings with rather surprising results.  The LEED-certified office buildings, collectively are responsible for 3% more source energy consumption and GHG emission than other large NYC office buildings (adjusted for total gsf, of course).  The graph below compares source energy intensity histograms for the two building sets.

Source LEED-21 vs NYC 953pos

The graph shows that the difference in the mean source energy intensities of the two building sets is not statistically meaningful.  In other words, the source energy consumption and green house emission of these LEED-certified office buildings is no different from that of other NYC office buildings — no more and no less.

As of a few months ago there were something like 8,300 buildings certified under one of the LEED programs that claim to reduce whole building energy use.  Measured energy consumption data have been published for 3% of these (now about 250).  While many of these LEED buildings surely save energy, many do not.  Collectively the evidence suggests, that LEED certification does not produce any significant reduction in primary energy use or GHG emission.

Why then does the Federal Government — and other governments (including NYC) — require new government buildings to be LEED certified?   The Federal Drug Administration (FDA) would never certify a medical drug with so little scientific evidence offered — let alone require its use.  The standards here are inverted — apparently the Federal Government believes convincing scientific data must be offered to demonstrate that LEED-certified buildings do not save energy before they will change their policy.